Обозначение по международным стандартам
Международный стандарт |
Американский ASTM A240 |
Европейский ЕN 10088-2, ЕN 10095 |
Российский ГОСТ 5632-72 |
---|---|---|---|
Обозначение марки | AISI 316 | 1.4401 | 07Х18Н13М2 |
AISI 316 L | 1.4404 | 03Х17Н14М2 | |
1.4432 | 03Х17Н14М3 | ||
1.4435 | 03Х17Н14М3 | ||
AISI 316 Ti | 1.4571 | 10Х17Н13М2Т |
Применяемые стандарты и одобрения
AMS 5511
ASTM A 240
ASTM A 666
MIL-S-4043
Классификация
AISI 316 и L - сталь конструкционная криогенная
AISI 316 Ti - сталь коррозионно-стойкая обыкновенная
Применение
- Специализированное промышленное оборудование в химической, продовольственной, бумажно-целлюлозной, горнодобывающей, фармацевтической и нефтехимической отраслях экономики в т.ч. резервуары (танки), трубы, насосы
- Строительная промышленность: архитектурные компоненты, кровля, и т.д.
- Теплообменники: бытовые и промышленные
Основные характеристики
- хорошее сопротивление коррозии в кислотах хлоридах
- низкая чувствительность к крекинговой коррозии
- превосходное сопротивление межкристаллитной коррозии (даже после сварки - для AISI 316L)
- отличная свариваемость
- высокая податливость
- превосходная обрабатываемость
Химический состав (% к массе)
стандарт | марка | C | Si | Mn | P | S | Cr | Ni | Mo |
---|---|---|---|---|---|---|---|---|---|
ASTM A240 | AISI 316 | ≤0.080 | ≤0.75 | ≤2.0 | ≤0.045 | ≤0.030 | 16.00 - 18.00 | 10.00 - 14.00 | 2.00 - 3.00 |
стандарт | марка | C | Si | Mn | P | S | Cr | Ni | Mo |
---|---|---|---|---|---|---|---|---|---|
ASTM A240 | AISI 316L | ≤0.030 | ≤0.75 | ≤2.0 | ≤0.045 | ≤0.030 | 16.00 - 18.00 | 10.00 - 14.00 | 2.00 - 3.00 |
стандарт | марка | C | Si | Mn | P | S | Cr | Ni | Mo | Ti |
---|---|---|---|---|---|---|---|---|---|---|
ASTM A240 | AISI 316Ti | ≤0.080 | ≤0.75 | ≤2.0 | ≤0.045 | ≤0.030 | 16.00 - 18.00 | 10.00 - 14.00 | 2.00 - 2.50 | 5 x (C + N) - 0.7 |
Механические свойства
AISI 316 |
Сопротивление на разрыв (σв), Н/мм² |
Предел текучести (σ0,2), Н/мм² |
Предел текучести (σ1,0), Н/мм² |
Относительное удлинение (σ), % | Твердость по Бринеллю (HB) | Твердость по Роквеллу (HRB) |
---|---|---|---|---|---|---|
В соответствии с EN 10088-2 | ≥520 | ≥220 | ≥260 | ≥45 | - | - |
В соответствии с ASTM A 240 | ≥515 | ≥205 | - | ≥40 | 217 | 85 |
AISI 316L |
Сопротивление на разрыв (σв), Н/мм² |
Предел текучести (σ0,2), Н/мм² |
Предел текучести (σ1,0), Н/мм² |
Относительное удлинение (σ), % | Твердость по Бринеллю (HB) | Твердость по Роквеллу (HRB) |
---|---|---|---|---|---|---|
В соответствии с EN 10088-2 | ≥520 | ≥220 | ≥260 | ≥45 | - | - |
В соответствии с ASTM A 240 | ≥485 | ≥170 | - | ≥40 | 217 | 88 |
AISI 316Ti |
Сопротивление на разрыв (σв), Н/мм² |
Предел текучести (σ0,2), Н/мм² |
Предел текучести (σ1,0), Н/мм² |
Относительное удлинение (σ), % | Твердость по Бринеллю (HB) | Твердость по Роквеллу (HRB) |
---|---|---|---|---|---|---|
В соответствии с EN 10088-2 | ≥520 | ≥220 | ≥260 | ≥45 | - | - |
В соответствии с ASTM A 240 | ≥485 | ≥170 | - | ≥40 | 217 | 88 |
Механические свойства при высоких температурах (AISI 316, AISI 316Ti)

Все эти значения относятся только к AISI 316 и AISI 316 Ti. Для AISI 316L значения не приводятся, т.к. её прочность заметно уменьшается при температуре выше 425 °C.
Сопротивление на разрыв при повышенных температурах (AISI 316, AISI 316Ti)
Температура (°C) | 600 | 700 | 800 | 900 | 1000 |
---|---|---|---|---|---|
Сопротивление на разрыв (при растяжении), Н/мм2 | 460 | 320 | 190 | 120 | 70 |
Максимальные рекомендуемые температуры эксплуатации
Температура образования окалины:
Непрерывное воздействие 925°C
Прерывистые воздействия 870°C
Физические свойства (AISI 316L)
Физические свойства | Условные обозначения | Единица измерения | Температура | Значение |
---|---|---|---|---|
Плотность | d | - | 4°C | 8.0 |
Температура плавления | °C | 1440 | ||
Удельная теплоемкость | c | J/kg.K | 20°C | 500 |
Тепловое расширение | k | W/m.K | 20°C | 15 |
Средний коэффициент теплового расширения | α | 10-6.K-1 |
20-100°C 20-300°C 20-500°C |
16.0 17.0 18.0 |
Электрическое удельное сопротивление | ρ | Ωmm2/m | 20°C | 0.75 |
Магнитная проницаемость | μ |
в 0.80 kA/m |
20°C | 1.005 |
Модуль упругости | E | MPa x 103 | 20°C | 200 |
Сопротивление коррозии
Общая Коррозия
Стали марок AISI 316, 316L являются наиболее стойкими из всех нержавеющих сталей 300-ой серии к атмосферным и другим умеренным типам коррозии. Все среды, в которых рекомендуется применять стали 300-ой серии, не представляют опасности для молибденсодержащих сортов. Одно известное исключение - азотная кислота, которая служит для них сильным окислителем.
AISI 316 является значительно более стойкими к серной кислоте, чем любые другие хром-никельсодержащие марки. При температурах около 50 °C AISI 316 стойка к этой кислоте в концентрации до 5 процентов. В температурах до 40°C и выше 60°C эта марка имеет превосходное сопротивление более высоким концентрациям. В местах конденсации сернистых газов она является намного более стойкой, чем другие типы. Однако следует тщательно следить за безопасной концентрацией.
Содержание молибдена в стали AISI 316 обеспечивает сопротивление окислению в большинстве применяемых окружающих средах. Как показывают лабораторные исследования, сплав обеспечивает превосходное сопротивление кипению 20%-ой фосфорной кислоты. Он также широко используется в горячих органических и жирных кислотах, поэтому часто применяется в изготовлении и обработке некоторых продуктов и фармацевтических изделий.
AISI 316 и AISI 316L могут одинаково хорошо применяться в средах, где существует риск возникновения межкристаллитной коррозии. Использование низкоуглеродистой AISI 316L предпочтительно в деталях, при изготовлении которых применяется сварка.
Степень защиты металла в кислотных средах
Температура, °C | 20 | 80 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Концентрация, % к массе | 10 | 20 | 40 | 60 | 80 | 100 | 10 | 20 | 40 | 60 | 80 | 100 |
Серная кислота | 0 | 1 | 2 | 2 | 1 | 0 | 2 | 2 | 2 | 2 | 2 | 2 |
Азотная кислота | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 2 |
Фосфорная кислота | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 1 | 2 |
Муравьиная кислота | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 |
0 - высокая степень защиты - Скорость коррозии менее чем 100 мкм/год
1 - частичная защита - Скорость коррозии от 100 до 1000 мкм/год
2 - нет защиты - Скорость коррозии более чем 1000 мкм/год
Атмосферные воздействия
Сравнение AISI 316 с другими металлами в различных атмосферах
(Скорость коррозии рассчитана при 5-летнем воздействии).
Окружающая среда | Скорость коррозии (мкм/год) | ||
---|---|---|---|
AISI 316 | Алюминий-3S | Углеродистая сталь | |
Сельская | 0.0025 | 0.025 | 5.8 |
Морская | 0.0076 | 0.432 | 34.0 |
Индустриальная Морская | 0.0051 | 0.686 | 46.2 |
Коррозионностойкость в кипящих химикалиях для AISI 316L
Кипящая среда | Скорость коррозии (мм/год) |
---|---|
20%-ая уксусная кислота | 0.003 |
45%-ая муравьиная кислота | 0.531 - 0.594 |
1%-ая соляная кислота | 0.024 - 1.615 |
10%-ая щавелевая кислота | 1.130 - 1.224 |
20%-ая фосфорная кислота | 0.015 - 0.027 |
10%-ая сульфаминовая кислота | 3.030 - 3.155 |
10%-ая серная кислота | 16.137 - 16.718 |
10%-й бисульфат натрия | 1.427 - 1.816 |
50%-ая гидроокись натрия | 1.971 - 2.169 |
Питтинговая коррозия
Сопротивление 316 сталей к питтинговой коррозии в присутствии хлорида увеличено более высоким содержанием хрома(Сr), молибдена(Мо), и азота (N). Относительная мера питтингостойкости определяется параметром, вычисляемым как PREN = Cr+3.3Mo+16N. PREN для сталей AISI 316 и AISI 316L(PREN=24.2) выше, чем для AISI 304 (PREN=19.0), что отражает лучшую питтингостойкость за счет присутствия молибдена.
Как показано в таблице ниже, лучшую стойкость к питтинговой коррозии обеспечивает более высокое содержание молибдена в сплаве.
CCCT (Критическая Температура Щелевой Коррозии) и CPT (Критическая Температура Питтинговой Коррозии) скоррелированы с PREN.
Сталь марки AISI 304 может сопротивляться питтинговой (щелевой) коррозии в воде, содержащей приблизительно до 100 ppm хлоридов, в то время как для AISI 316 и AISI 317 этот показатель составляет до 2000 и 5000 ppm хлоридов, соответственно.
Хотя эти сплавы использовались в морской воде (19 000 ppm хлоридов), они не рекомендуются для такого использования. Для применения в морской воде разработан сплав с 6.2 % Мо и 0.22 % N. Однако применение этих марок в аэрозольной морской среде (фасады зданий около океана) и загрязненной городской среде (крыши, дымоходы) возможно.
Марка | Композиция | PREN1 |
CCCT2 (°C) |
CPT3 (°C) |
||
---|---|---|---|---|---|---|
Cr | Mo | N | ||||
AISI 304 | 18.0 | - | 0.06 | 19.0 | <-2.5 | - |
AISI 316 | 16.5 | 2.1 | 0.05 | 24.2 | <-2.5 | 15 |
AISI 904L | 20.5 | 4.5 | 0.05 | 36.2 | 20 | 40 |
- 1 Pitting Resistance Equivalent — Эквивалент Сопротивления питтинговой коррозии, включая азот, PREN =Cr+3.3Mo+16N
- 2 Critical Crevice Corrosion Temperature — Критическая Температура Щелевой Коррозии, CCCT, в соответствии с ASTM G-48B (6%FeCl3 в течение 72 часов, с щелями)
- 3 Critical Pitting Temperature — Критическая Температура Питтинговой Коррозии, CPT, в соответствии с ASTM G-48A (6%FeCl3 в течение 72 часов)
Межкристаллитная коррозия
Содержание углерода в AISI 316 может вызвать сенсибилизацию от теплового режима в местах сварных швов и зонах их термического влияния. По этой причине использование низкоуглеродистой стали AISI 316L предпочтительно в деталях, при изготовлении которых применяется сварка. «Низкий углерод» увеличивает время, необходимое для осаждения «вредных» карбидов хрома, но не прекращает реакцию их осаждения на длительное время в данном диапазоне температур.
Тест на МКК (Межкристаллитную коррозию)
ASTM A 262 Оценочные испытания |
Состояние металла | Скорость коррозии (мм/год) | |
---|---|---|---|
AISI 316 | AISI 316 L | ||
Practice B (Метод B) (гептагидрат сульфата железа - Серная кислота) |
Обычный | 0.9 | 0.7 |
Сваренный | 1.0 | 0.6 | |
Practice E (Метод E) (пентагидрат сульфата меди - Серная кислота) |
Обычный | Без трещин на изгибе | Без трещин |
Сваренный |
Незначительные трещины на сварном шве (недопустимо) |
Без трещин | |
Practice A (Метод A) (Травление щавелевой кислотой) |
Обычный | Расслоение ступенчатое | Расслоение ступенчатое |
Сваренный |
Глубокое растрескивание (недопустимо) |
Расслоение ступенчатое |
Растрескивание (Крекинговая коррозия) под напряжением
Аустенитные сплавы под воздействием напряжения восприимчивы коррозионному растрескиванию (SCC) в галоидных соединениях. Хотя 316-е сплавы несколько более стойкие к SCC из-за содержания молибдена, они все равно являются весьма восприимчивыми.
Причины SCC:
- присутствие ионов галоидного соединения (вообще хлоридов);
- остаточные напряжения при растяжении;
- температуры свыше 50 °C.
Напряжения могут возникнуть из-за деформации сплава в холодном состоянии во время формования, или ротационной вытяжки, или в процессе сварки, из-за возникновения напряжения от смены тепловых циклов.
Уровни напряжения могут быть снижены путем отжига или термической обработкой после деформации в холодном состоянии.
Низкоуглеродистый материал AISI 316L - лучший выбор при эксплуатации при воздействии напряжений, которые способствуют возникновению межкристаллитной коррозии.
Скорость растрескивания в зависимости от условий окружающей среды
Окружающая среда | AISI 316 | AISI 316L |
---|---|---|
42%-ый Хлорид Магния, Кипение | Растрескивание 4-24 часа | Растрескивание 21-45 часа |
33%-ый Хлорид Лития, Кипение | Растрескивание 48-569 часов | Растрескивание 21-333 часа |
26%-ый Хлорид Натрия, Кипение | Растрескивание 530-940 часов | Без изменений 1002 часа |
40%-ый Хлорид Кальция, Кипение | Растрескивание 144-1000 часов | - |
Морское побережье, Окружающая Температура | Без изменений | Без изменений |
Сварка
- Сталь легко свариваемая
- После сварки термическая обработка не требуется
- Сварные швы должны быть механически или химически очищены от окалины, затем пассивированы
Формовка
AISI 316/316L, являясь чрезвычайно прочной, упругой и пластичной, с легкостью находит множество применений. Типичные действия включают изгиб, формирование контура, волочение, ротационную вытяжку и т.д. В процессе формовки можно использовать те же машины и, чаще всего, те же инструменты, что и для углеродистой стали, но здесь требуется на 50-100% больше силы. Это связано с высокой степенью упрочнения при формовке аустенитной стали, что в некоторых случаях является отрицательным фактором.
число Эриксена характеристика обрабатываемости листового металла давлением |
LDR предельный коэффициент вытяжки |
---|---|
11.0-11.5 (мм) | 2.00-2.05 (мм) |
Обработка
Отжиг
Диапазон температуры отжига 1050°C ± 25°C сопровождается последующим быстрым охлаждением на воздухе или в воде. После отжига необходимо травление и пассивирование.
Отпуск
200-400°C с последующим воздушным охлаждением
Травление (очистка поверхности)
- Смесь Азотной кислоты и фтористоводородной/плавиковой кислоты (10 % HNO3 + 2% HF) при комнатной температуре или 60°C
- Серно-азотная кислотная смесь (10 % H2SO4 + 0.5 % HNO3) при 60°C
- Паста для очистки от окалины в зоне сварки
Пассивация
- 20-25 % раствор HNO3 при 20°C
- Пассивирующие пасты для зоны сварки